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MOTIVATION

One of the key issues in bridge maintenance systems is Structural
Health Monitoring (SHM) as a tool to identify the existence of
Damage.

A Damage Identification Procedure (DIP) comprises three main
levels:

- Detection
- Localization
- Quantification

When DIP is conducted effectively, it may prevent extensive
rehabilitation and costs due to the execution of appropriate timely
repairs.

SHM is of paramount interest for an optimum
assessment and maintenance policy !!
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NEW TECHNIQUES

- DISTRIBUTED FIBER OPTICS
- ACOUSTIC EMISSION

- DIGITAL IMAGE CORRELATION (DIC)

- OTHERS.....



DISTRIBUTED FIBER OPTICS



Level 1 Detection (Global Identification)

First, damage modifies the sttiffness of the structural system

Something happens: increase of deflection, change of frequencies

Discrete sensors

Strain gauge Vibrating wire Accelerometer



Level 2 Localization (Local Identification)

Localization is an extension of damage detection in the process
of SHM by estimating the possible damage position within the

structure

Localization of damage in RC structural member (cracks) with
discrete sensors is limited (Local Identification is dificult)

% Cracks i % \\ 7
= . - ‘ = Crack detection must be based on :

™S ] 7 7 - Visual inspection, which is time
- Discrete sensors consuming, expensive and
I unreliable procedure.
e
whd
0 With advanced structural

. . > analysis techniques.
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Optical instrumentation
No signal loss (5 km)
Strain accuracy (+-0.1 pe)
Immunity to the EMI/RFI

Resistance to corrosive environments

T

. Capacity to be thermally compensated
Types

1. Fabry-Perot
2. Bragg Grating \w
3. Continuous Sensors

The optical fiber is an ideal distri
sensor by its material properties

FBG mirrors
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Fiber Optic Sensors

Fiber Optical Sensors

Grating-based Interferometric Distributed Sensors
Sensors Sensors

SOFO Sensors
Fiber Bragg Grating Rayleigh scattering based

Sensors Sensors | Distributed Sensors

Fabry-Perot Sensors

Long Period Grating Raman scattering based
Sensors | Distributed Sensors
Mach-Zehnder
Sensors
Tilted Fiber Bragg | Brillouin scattering based
Grating Sensors Distributed Sensors

Sagnac Sensors

Microbending /
Intensity sensors

Distnibuted Sensors (Sensing Cables), single

enchained

line sensitive n cach point on cables

single connecting
cable. simple

Pipeline

s
5 J connection

Several kilometers

4

Up to few km
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Sensors,
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All possible crack openings are covered by the extension of the sensor
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Level 3: Quantification

Quantification is the last step to assess the damage
condition: to quantitatively estimate the severity of the
damage.

Example: Assessing damage due to cracking in concrete
structures: which is the crack width ?

Discrete sensors (very difficult/not possible)

Distributed Optical fiber (OBR system) is possible
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STRUCTURAL HEALTH MONITORING WITH FIBER OPTICS
e Use OBR BACKSCATTER REFLECTOMETER (Optical Fiber) —> in slab LR1
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EXPERIMENTAL RESULTS
OBR BACKSCATTER REFLECTOMETER IN SLAB R1

Pea_k reft?giggg to Strain Strain Pea_k ré_i?e Cr:trllzg d Strain | Strain
Segment | location seament (ne) at (ne) at Segment | location to seament (ne) at | (ue) at
(m) =9 50kN | 110kN (m) 5€g 50kN | 110kN
origin (m) origin (m)

3 15.513 1.953 - 800 4 20.374 3.736 - 510

3 15.818 2.258 400 2250 4 20.522 3.588 - 800
3 16.046 2.486 1300 2450 4 20.694 3.416 270 4400
3 16.318 2.758 800 2590 4 20.909 2.931 - 4460
3 16.492 2.932 1480 2040 4 21.123 2.987 400 2250
3 16.551 2.991 - 1550 4 21.288 282D 1450 2600
3 16.745 (3.185> 1090 3450 4 21.436 2.674 - 2150
3 16.942 3.382 1500 3500 4 21.562 .548 3260 4910
3 17.085 3.525 - 2650 4 21.735 - 2000
3 17.355 3.795 - 2240 4 21.851 1650 2700
3 17.626 4.066 - 1700 4 22.064 2.046 1270 2500
3 17.830 4.270 - 675 4 22.357 1.735 - 4500

T3 |

Crack 2.93

§
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Crack width at mid-span

— L'eoBR
HOAD Emean = f ——dL
0 L

€oBR

Yw
Emean = Efct + A

Sfct

Wmean = —
5000 N

o

Fiber Length (mm)

N = number of cracks
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» Viaduct on the BP-1413 Highway
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NEW DEVELOPMENTS ON SHM OF EXISTING STRUCTURES
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PRUEBA DE CARGA: Carretera BP-1413, P2 (prueba 3)
> B P'14 13 LECTURA DE COMPARADORES (mm) : FLECHAS (mm)
ESCALON RAMA TOmA DE
LECTURAS 1
L1 L2 L3 L4 L5 L& : L1 L2 L3 L4 L5 L&
0 ORIGEN inmediata 637 29,08 34,14 21,30 26,11 18,66 I —_ — - — — —_
inmediata 6,80 30,86 3777 ITEE 26,81 o041 | o052 1,58 ,’m\\ 8,35 0.70 1.75
1 CARGA }
10 min 6,84 30,68 37,85 37,85 26,84 2043 | 057 100 Nee3Zl o’ 655 0,73 177

DESCARGA

Fibra Optica F02 Flexometros SAP2000
% 3,45 3,71 3,42

Fibra Optica FO3 Flexometros SAP2000
0,26 - 0,57
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= Early 20t century modernist

building
= Masonry structure

= UNESCO World Heritage Site
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1- Work station
2- Non adherent DOFS
3- Adherent DOFS
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Grafica FO - MicroStrain vs. Length - Calibration

0~

~10 -

Micro Strain

o
=
3
g
3
3

First reading of the sensor serves as a baseline
calibration for subsequent readings
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Grafico FO -MicroStrain vs Length -
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FO -MicroStrain vs Length -
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Micro deformations oscillation corresponds to an increase of compression

Total increase due to both columns replacement is of = 80 pe

Prevention of decompression of the vaults

The formation of new cracks was not observed both by the monitoring system or

by visual inspection

In the last readings, it is perceived a recovery of
stabilization

~ 20
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= |ocated over one of the busiest road entrances of Barcelona

=  Two-span prestressed concrete bridge (36m and 50m span)

= |In order to enhance the pedestrian traffic and capacity as well as aesthetics of the
bridge, a deck widening procedure was proposed with the addition of a steel structure
over the new sidewalks. This produces a change in the bridge permanent loads.

Objective:

= Detect major changes in the structural behavior of the bridge and obtain information
to assess the structural safety during and at the end of this process.
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29/06/2015 Initial reading and calibration — 4 hours’ measurement — DOF 1 only
16/07/2015 5 hours’ measurement — DOF 1 only
06/08/2015 8 hours’ measurement — DOF 2 only
15/09/2015 5 hours’ measurement — DOF 1 only
01/10/2015 6 hours’ measurement — DOF 2 only
02/10/2015 2 hours’ measurement — DOF 2 only*
09/10/2015 6 hours’ measurement — DOF 1 only
04/11/2015 8 hours’ measurement — DOF 1 and DOF 2
10/12/2015 7 hours’ measurement — DOF 2 only
22/12/2015 3 hours’ measurement — DOF 2 only
18/01/2016 6 hours’ measurement — DOF 2 only
19/01/2016 3 hours’ measurement — DOF 2 only
20/01/2016 3 hours’ measurement — DOF 2 only

* The two hours’ duration was due to the rupture of the cable that provided electrical
power to the monitoring system

» DOFS data was achieved through continuous readings obtained in combined time intervals of: 1
reading each 5 minutes and 1 reading each 10 minutes.

» The critical values (maximum and minimum) are analyzed and used to generate envelope
response graphs

URES




International Association for Bridge
Maintenance and Safety

Initial results
Bonded

300
200

——— 29/06/2015 ——— 16/07/2015
——— 15/09/2015 —— 9/10/2015

e 4/11/2015

Length (m)

Unbonded
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Initial results Bonded
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= However, since this readings go from the beginning of summer up until winter, it’s necessary to
take into account the temperature effect on these initial readings.

Unbonded loop of the DOF sensor

Readings in this part of the sensors are only affected by the ambient temperature variation
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After temperature compensation
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After temperature compensation

400
T l ? I I 1 '
i a 10 I‘l\ 50 40
\".u-..w«w i mw w' wmu.um
= -600 - IS I i’ c‘ll "”‘M! A
3 :
£
o I ——
E 100 6/08/2015 1/10/2015
——04/11/2015 ——10/12/2015
-1600 ~ ~22/12/2015 —— 18/01/2016
~-19/01/2016 — — 20/01/2016
-2100
Length (m)






e

TESTS ON SHEAR CRACKING
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Parallel experiments within UPC’s
research group:

Laboratory experiment where Partially Prestressed
Concrete (PPC) beams were instrumented with DOFS
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>

= By converting the
whole length of the
fiber to a local
coordinate system, the
pinpointing of the
cracked grid locations
was possible

Web Height (cm)
[y

™ |

™

\D\\

('} | )] 03 04

Fiber Length {cm) BEAM 11 (262 kN)

= Comparing with the
acquired photographic
evidence, both =T
patterns present a ; / / /
satisfactory e D
agreement

Web Height (cm)

=l

N
\
\u
\1
¥
W

Fiber Length (cm) BEAM 12 (244 KkN)




Calculation of Shear Crack Width

1 n
| - y
A, >
pe
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Strain

rosette OBR
203 | 0.24 | 0.20
213 0.27 | 0.21




CONCLUSIONS

- Feasibility to assess cracking in concrete: crack initiation and
evolution with time and most important: location of cracks
and dimensions

*Feasibility to measure deflections ( integration of continuous
curvature)

Good bonding with concrete surface (smoothing of concrete
to facilitate placement).

Good bonding up to high levels of load: crack openings higher
than 1 mm.

Even for load levels higher than 60 % of failure load, OBR is
still measuring properly, providing correct values of strain an
without fiber breaks.



BENDING

« The OBR system deployed allowed to predict the formation
of the initial cracking (even before visually observed), the
location of the cracks and also their width based on the
continuous monitoring of strain along the optical fiber.

- The obtained results compare very well with the available
experimental values obtained from the rest of the sensors
as well as with the visual inspection and the values
predicted by the non-linear finite element models.



SHEAR

= Proven feasibility of DOFS monitoring of shear induced
cracking on concrete structures

= Continuous strain data at different loading levels were
obtained with high spatial resolution by OBR system

= Detection and location of shear cracks were obtained
without requiring prior knowledge of the cracked zone

= An extended method to obtain a complete shear crack
pattern in concrete structures, including crack inclination
and width, using DOFS is actually under development
based on the results obtained in this experimental
campaign



REAL STRUCTURES

= Possible to observe the evolution of strain due to
structural changes with high spatial resolution along an
extensive length of the structure

= Relatively simple and easy installations with the use of
only one terminal and one connection cable

= Two different types of structural materials (masonry and
concrete) denotes the versatility allowed by this
technology and the feasibility of bonding the fiber to
those materials.
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Optical Backscattered Reflectometer (OBR) : Description

4N

¢ Anti-Stokes components : Stokes components
Rayleigh
Raman Brillouin Brillouin Raman
T,e T.s

LS Wavelengtl:
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1 8 Fiith International Symposium
Ion Life-Cycle Civil Engineering .
N 116-19 October 7016 - Dulf The Neherlands 1 ]

In this way, we can use the following expression:

apparent
4 2 (LY
straim—CHE-dependent-apparent-strainy
Mechanical ue (mean) RIAS pe TEAS ne
ue (mean)
handac fibar (mean) (mean)

8Li - (AVBI‘, X kE) - ((kTLT X AVU X kE) + (AVU X kT X as))

RIAS — Refractive index apparent strain

TIAS — Thermal expansion apparent stfdin = Spectral shift in bonded fiber

: nitoring of Real
$Btributed Optical

Fibers
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Filth International Symposium
on Life-Cycle Civil Engineering
6 - Delft The Necherlands

90

He (mean) bonded RIAS pe TE’:S Mechanical
fiber (mean) (mean) HE (mean)
11 -1 1 11
16 90 -114 40
-89 -321 405 -173
ME (mean) bonded RIAS pe TEAS pe Mechanical
fiber (mean) (mean) HE (mean)
0.23 -6.00 7.58 -1.35
—1152 -568 718 -302
-117 -630 796 -283
-209 -976 1234 -467
-202 -953 1205 -454
e can Implement this ayerage 1n order tQ update our prievious graéohs
-270 -1112 1406 -563
-252 -1143 1445 -554
pf Real
Dptical
-253 -1160 1466 -559 Fibers
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Acoustic Emission (AE) techniqu

Acoustic Emission (AE) refers to the generation of
transient elastic waves produced by a sudden
redistribution of stress in a material (= earthquake)

Uses signals generated within the structure, which are
due to

— crack growth under stress

— secondary emissions due to e.g. friction of crack interfaces

Signal W

One or more Sensors i

Electronics

s
P -

- S
""""""""""

3 . " . : pe
stimulus RS i
(force) ARG S Wayé propagation

S -

-

stimulus
(force)




Pros & Contras AE

ADVANTAGES

DISADVANTAGES

Distant events can be detected

The structure has to be loaded

at once

The whole structure can be tested all

AE activity depends on microstructure
of the material

Measuring equipment is easy to use

Ambient noise can disturb the
measurement

required

Access to the whole structure is not

Localization is not completely precise

Active cracks can be detected

Demanding interpretation of
measurements requiring skilled
personnel




: International Association for Bridge
N/ Maintenance and Safety

veI 1: Damage detection

AE signal — basic expressions

Yokaz oV1vs Teles) 1)
Rise ;
Volts r'rnme Energy ; e
| Alhc ;
Amplitude / N l | | i |
AR HRLHE L) St -Threshold ! e In 1k h
M FRFAATr—— e—
W" IWWWW Time ) ]
| Typical burst AE signal
Threshold
Crossing
[T e

Theoretical burst AE signal

ERERINIH Time LUIMW‘ ,UW l|i i W'MW {

|
§ W In 1n 8

Typical “continuous” AE signal
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Level 2: Damage localization

Interpretation of AE data

AE event location determination

» An AE measuring system can be used to determine the
location of the AE event
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Proof load test: Barcza bridge (Poland)
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Deflections - inductive transducers
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g Deflection/Support displacement — Total Station

mm  Strain/stress - electric resistance wire strain gauges
A Acoustic emission - sensors

E Support displacement — leveling staff
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Proof load testing - Test results — Deflections/Bending oment

—e—DG1 144 ——DG1 1)2 ——DG1 314 — — Calculated DG1 142 Bending moment [kNm]
0 T T T T T T T T T |
0 200 300 400 500 600 700 800 900 1000
~
1 B
~
\\\
" N
2 ~
e
\
S
\ o
-3 -~ \
— ™ .
£ ~
7] -
2 ~ -~ \\
2-5 = e = \ -
3 \\ \ \
~
e
5 ~— \\
~
-
“\
7 s
~ \\
\ ~
-8
8
loading phases
I 11 2 1 31 41 51 6 I 7 | 8 | 9 | 10 I

Green lines - loading level where load testing should have been stopped on the
base of AE signals
The red line - loading level where the cracking was detected by visual inspection
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CONCLUSIONS

Non-linearity in the response of the structure to high
loads was successfully detected by the increased AE
activity during a proof load test.

The change in AE signal characteristics was recorded
beyond the point of the linear response of the structure,
proving that the source of the AE waves changed too.

The AE system can successfully be used to detect AE active
zones In the structure. These zones could be related to
damaged or damage-active zones.

Using a sufficient number of sensors (which is problem

specific) the AE system enables exact determination of source
location.
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Steel: cable elements
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Strain

Why Distributed Fiber Optic
Sensors (DOFS) ?
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Distributed Sensor (OBR)
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CHARACTERISTICS

Practical solution to
measured cracks

Continuous (in space)
monitoring

high spatial resolution (mm):
we do not have to know in
advance where the damage
will appear

High sensitivity
Fast and easy instalation

Improvement of SHM
systems
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Optical Backscattered Reflectometer (OBR) : Background

(2) While the light pulse travels along the fiber, a
fraction of it is scattered back. The passing time
from the launch of the pulse and the arrival of the
backscattered light infers on the location of

(3) The backscattered light will change its

measurement (distance). frequency if the fiber is strained.
(4) By resolving the frequency content of the
backscattered light, a 3D graph can be generated.
The peaks correspond to the Brillouin shift.
Therefore changes in strains can be resolved from

(1) A laser generates such a graph.

a pulse of light with a

specific light

frequency.

Scattered light
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Tests results and discussion

Material
properties

Beam I1 325 4.6 36440 126
Beam 12 293.5 4.15 27264 152

J

~

Level of extension that originates cracking of the
concrete
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Tests results and discussion

Beam I2 - Horizontal Sections
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Beam I2 - Horizontal Sections
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Beam I2 - Horizontal Sections
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Beam I2 - Horizontal Sections
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The effect of the general unloading that the bridge suffered due to the removal of the
slabs, pavement and the milling of the agglomerate, when compared to the loading at

the time of calibration, is detected

Furthermore, the continuous increase of compression at the bottom fiber of the
monitored span can also be explained by the incre®e of load verified by the adjacent
span that ended up having a greater new load than‘ he one imposed on the monitored

span

In this way, fi§ in diagram of the

material, it is or DOF1 of -11.42

MPa and for D

So, it is possib

an harmful impact for the monitored structure



